Characterisation of hydration and nanophase separation during the temperature response in hydrophobic/hydrophilic elastin-like polypeptide (ELP) diblock copolymers.
نویسندگان
چکیده
To understand the complex nanoscale dehydration process during the lower critical solution temperature (LCST) based inverse phase transition of a class of thermoresponsive biopolymers, diblock elastin-like polypeptides (ELPs) were investigated by spin probing continuous wave electron paramagnetic resonance (CW EPR) spectroscopy. The diblock copolymers composed of a hydrophobic block and a hydrophilic block showed different mechanisms of a temperature-driven phase transition. While the phase transition temperature is a function of the hydrophobic mass fraction of the diblock ELPs, the hydrophilic block length determines the molecular structure of the polymer aggregates formed above the transition temperature. When the weight ratio of hydrophilic block length to hydrophobic block length is greater than or equal to 0.3, the polymer aggregates consist of a hydrophobic core and a hydrophilic corona. The interface of these two regions become permeable at temperatures above the transition temperature. In case of smaller ratios, the aggregating hydrophobic parts of the polymer enclose the hydrated hydrophilic blocks, that are too small to form a hydrophilic corona, leading to bigger and less dense aggregates of higher polarity.
منابع مشابه
Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles.
The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance t...
متن کاملEffect of protein fusion on the transition temperature of an environmentally responsive elastin-like polypeptide: a role for surface hydrophobicity?
The limited throughput, scalability and high cost of protein purification by chromatography provide motivation for the development of non-chromatographic protein purification technologies that are cheaper and easier to implement in a high-throughput format for proteomics applications and to scale up for industrial bioprocessing. We have shown that genetic fusion of a recombinant protein to an e...
متن کاملHybrid Elastin-like Polypeptide–Polyethylene Glycol (ELP-PEG) Hydrogels with Improved Transparency and Independent Control of Matrix Mechanics and Cell Ligand Density
Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, EL...
متن کاملEnhanced uptake of a thermally responsive polypeptide by tumor cells in response to its hyperthermia-mediated phase transition.
Elastin-like polypeptides (ELPs) composed of a VPGXG repeat undergo a reversible phase transition in aqueous solution. They are hydrophilic and soluble in aqueous solution below their transition temperature (T(t)), but they become hydrophobic and aggregate when the temperature is raised above their T(t). In this study, we examine the quantitative uptake of a fluorescence-labeled, thermally resp...
متن کاملHydration and conformational mechanics of single, end-tethered elastin-like polypeptides.
We investigated the effect of temperature, ionic strength, solvent polarity, and type of guest residue on the force-extension behavior of single, end-tethered elastin-like polypeptides (ELPs), using single molecule force spectroscopy (SMFS). ELPs are stimulus-responsive polypeptides that contain repeats of the five amino acids Val-Pro-Gly-Xaa-Gly (VPGXG), where Xaa is a guest residue that can b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 13 9 شماره
صفحات -
تاریخ انتشار 2017